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Abstract

We present a new algorithm, the Time Dependent Phase Space Filter
(TDPSF) which is used to solve time dependent Nonlinear Schrodinger
Equations (NLS). The algorithm consists of solving the NLS on a box
with periodic boundary conditions (by any algorithm). Periodically in
time we decompose the solution into a family of coherent states. Coherent
states which are outgoing are deleted, while those which are not are kept,
reducing the problem of reflected (wrapped) waves. Numerical results are
given, and rigorous error estimates are described.

The TDPSF is compatible with spectral methods for solving the in-
terior problem. The TDPSF also fails gracefully, in the sense that the
algorithm notifies the user when the result is incorrect. We are aware of
no other method with this capability.

1 Introduction and Definitions

Consider a semilinear Schrödinger equation on RN+1

i∂tψ(x, t) = −(1/2)∆ψ(x, t) + g(t, ~x, ψ(~x, t))ψ(~x, t) (1.1)

where g(t, ~x, ·) is some semilinear perturbation. For instance, g(t, ~x, ·) could

be V (~x, t) + f(|ψ(~x, t)|
2
) for some smooth function f and (spatially) localized

potential V (~x, t). Abusing terminology, we refer to g(t, ~x, ·) as the nonlinearity
even when it is linear.

We assume the initial condition and nonlinearity are such that the nonlin-
earity remains localized inside some box [−LNL, LNL]N . Outside this region the
solution is assumed to behave like a free wave.

One very common method of solving such a problem is domain truncation.
That is, one solves the PDE (1.1) numerically on a region [−L,L]N . On the
finite domain, boundary conditions must be specified. Dirichlet or Neumann
boundaries introduce spurious reflections, while periodic boundaries allow out-
going waves to wrap around the computational domain. This causes the numer-
ical solution to become incorrect after a time T ≈ L/kmax, where kmax is the
“maximal velocity” (the highest relevant spatial frequency) of the solution.
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There are two major approaches to dealing with this problem. The Dirichlet-
to-Neumann method consists of attempting to use the exact solution as a bound-
ary condition. This works rather well for the wave equation [1, 2, 9, 11, 13],
but it is fraught with problems for dispersive waves and only limited progress
has been made [16, 19, 20, 25]. Dirichlet-to-Neumann methods also prevent the
use of fast spectral methods for solving the interior problem because spectral
methods based on the FFT naturally impose periodic boundary conditions. A
spectral solver for the interior problem is highly desirable since dispersive waves
are difficult to calculate by other methods (see Remark 3.1).

The other approach is to add a dissipative term which is localized on a buffer
region [−(Lint + w), (Lint + w)]N \ [−Lint, Lint]

N . The dissipative term can be
an absorbing potential [17] or the more sophisticated PML [3]. This dissipates
outgoing waves, but also dissipates incoming waves located near the boundary.
This can introduce spurious dissipation (see Section 3.2) which does not occur
for the TDPSF.

1.1 Our Approach

We propose a new method. Suppose we want to approximate the solution in
the space Hs (with s large enough to make (1.1) is well posed). We make the
assumption that outside some region [−LF , LF ]N , ψ(x, t) behaves like a free
wave, i.e. ψ(x, t) ≈ ei(1/2)∆tψ+(x). The size of the computational box Lint

must be larger than LF .
We assume the nonlinearity is nearly localized both in position and momen-

tum. That is, we assume the existence of LNL, kmax,NL so that:

∥

∥[1 − χ[−LNL,LNL]N (~x)]g(t, ~x, ψ(x, t))ψ(x, t)
∥

∥

Hs ≈ 0 (1.2a)
∥

∥

∥[1 − χ[−kmax,NL,kmax,NL]N (~k)]g(t, ~x, ψ(x, t))ψ(x, t)
∥

∥

∥

Hs
≈ 0 (1.2b)

For the rigorous proof, we assume that the nonlinearity is Lipschitz in Hs,
though this is probably unnecessary. In particular, the nonlinearity could take
the form of a time dependent short range potential V (~x, t)ψ(~x, t) or a local

nonlinearity f(|ψ(~x, t)|
2σ

)ψ(~x, t) with f(z) a bounded function.
We also assume that the solution remains localized in frequency, that is the

Hs norm of ψ̂(~k, t) is small outside [−kmax, kmax]
N for some large number kmax

(the maximal momentum of the problem, which we assume exists).
Our algorithm is as follows. We assume the initial data is localized on a

region [−Lint, Lint]
N . We solve (1.1) on the box [−(Lint + w), Lint + w]N on

the time interval [0, Tstep]. We insist that Lint > LF , LNL so that the solution
behaves like a free wave on [−(Lint + w), (Lint + w)]N \ [−Lint, Lint]

N .
By making Tstep smaller than w/3kmax, we can ensure that ψ(~x, Tstep) is

mostly localized inside box [−(Lint +w), (Lint +w)]N . Since very little mass has
reached the boundary, the error is nearly zero [24, Thm. 4.1].

We then decompose ψ(~x, Tstep) into a sum of Gaussians (indexed by ~a,~b ∈
ZN , with lattice spacing x0 in position, k0 in momentum and standard deviation
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σ):

ψ(x, Tstep) ≈
∑

|~ax0|∞≤Lint+w

|~bk0|∞≤kmax

ψ(~a,~b)π
−N/4σ−N/2eik0

~b·~xe−|~x−~ax0|
2
2/2σ

2

We then examine the Gaussians near the boundary, |~ax0|∞ ≥ Lint, and deter-
mine whether they are leaving the box or not under the free flow (|~x|p denotes
the lp norm on finite vectors). By assumption, ei(1/2)∆t is a sufficiently accurate
approximation to the true solution for this part of the solution. We apply this
approximation to each framelet:

ei(1/2)∆tπ−N/4σ−N/2eik0
~b·~xe−|~x−~ax0|

2
2/2σ

2

=
exp

(

i~bk0 · (~x− (~bk0/2)t− ~ax0)
)

πN/4σN/2(1 + it/σ2)N/2
exp

(

−|~x−~bk0t− ~ax0|
2
2

2σ2(1 + it/σ2)

)

(1.3)

Under the free flow, a framelet moves along the trajectory ~ax0 + ~bk0t while
spreading about it’s center. If a given Gaussian is leaving the box, we delete it
(set ψ(~a,~b) = 0). Some Gaussians spread more quickly than their center of mass

moves, and we do not present here an algorithm to deal with these Gaussians.
After this filtering operation, the only Gaussians remaining are either inside

the box [−Lint, Lint]
N , or inside the box [−(Lint +w), (Lint +w)]N but moving

towards [−Lint, Lint]
N . Thus, it is safe to propagate for a time Tstep, since what

remains will not hit the boundaries before this time. We do the same at time
2Tstep, 3Tstep, etc.

The main drawback to this approach is that some Gaussians are ambiguous.
Consider a Gaussian with velocity 0: π−N/4σ−N/2e−|~x−~ax0|

2
2/2σ

2

. Suppose also
that ~ax0 is located inside [−(Lint+w), (Lint+w)]N\[−Lint, Lint]

N . By examining
(1.3), we observe that this framelet is spreading out laterally both into the box
and outward. If we delete it, we have removed waves which should have returned.
If we fail to delete it, then that part of the framelet which is spreading outwards
will wrap around and cause an error.

This happens only for Gaussians which are moving slowly relative to the
box. Thus, we impose one additional assumption – we assume that Gaussians
moving so slowly that they move both ways do not occur in the solution. The
algorithm to deal with low frequency waves is more involved and we relegate
this to a future work [23].

1.2 Error Bounds

We prove rigorous error bounds for the TDPSF algorithm in [24], as well as
stating explicitly the assumptions and defining what we mean by “≈”. Although
the error bound is too long to state here, we describe briefly the form it takes.
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For a general time-stepping algorithm (with periodic boundaries and no
filtering), the error bound would take the following form:

sup
t∈[0,Tmax]

‖U(t)ψ0(x) − Ψ(x, t)‖Hs
b
≤ BoundaryError(Tmax)

+ HighFrequency(Tmax) + LowFrequency(Tmax)

+ NonlocalNonlinearity(Tmax) + Instability(Tmax) (1.4)

The term BoundaryError(Tmax) encompasses errors due to waves wrap-
ping/reflecting from the boundaries of the box. For many problems, this is the
dominant error term. It is directly proportional to the mass which would have
(if we were solving the problem on R

N ) radiated outside the box [−Lint, Lint]
N .

The HighFrequency(Tmax) part stems from waves with momenta too high to
be resolved by the discretization. The term LowFrequency(Tmax) encompasses
errors due to waves with wavelength that is long in comparison to the box. The
term NonlocalNonlinearity(Tmax) stems from that fraction of the nonlinearity
itself which is located outside the box. The Instability(Tmax) stems from the
possibility that the dynamics of the solution itself might amplify the other errors
dramatically (e.g. in strongly nonlinear problems).

Our algorithm reduces the term BoundaryError(Tmax). The other errors are
assumed to be small, since we are concerned only with the boundary error.

The method of proof is a direct calculation. We calculate the errors made
in the filtering step as well as the errors made while propagating in between
filtering. We then add up the error over time, taking into account instabilities
of the system being simulated. The error takes the form described in (1.4).
The BoundaryError(Tmax) term can be reduced by increasing w, and the error
behaves like BoundaryError(Tmax) = O(e−CwTmax). In some cases (problems
which are asymptotically complete and have no bound states), we believe that
this error can be proved to be time independent.

The main drawback of our algorithm is that it does not provide us the ability
to filter waves for which the wavelength is longer than the buffer region. This is a
due to the Heisenberg uncertainty principle. This problem will be addressed by
a novel multiscale argument in [23]. The problem is shared with most methods
of absorbing boundaries. The TDPSF algorithm also alerts the user when it
fails, unlike all other methods we are aware of.

2 The Algorithm

2.1 The Windowed Fourier Transform

The discrete windowed Fourier transform frame is a way of localizing a function
f(~x) in the phase space. For the big picture, see [6, 7, 8]; see also [24, Section
3] for technical details needed by the TDPSF.

The WFT is an expansion of a function f(x) into the following “basis”
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(actually a frame) for L2(RN ):

φ(~a,~b)(~x) = π−N/4σ−N/2eik0
~b·~xe−|~x−~ax0|

2
2/2σ

2

, ~a,~b ∈ Z
N × Z

N (2.1)

The lattice spacing in position and momentum, x0, k0, and the standard devia-
tion σ must positive real numbers. To be a frame, it must hold that x0k0 < 2π.

This family of functions is not a basis in the usual sense, but a frame. A
family of functions {φj(x)}j∈J is a frame in the Hilbert space H if there exists
an 0 < AF ≤ BF <∞ so that:

AF ‖f(x)‖H ≤





∑

j∈J

|〈f |φj(x)〉|
2





1/2

≤ BF ‖f(x)‖H

A frame is an overcomplete, non-orthonormal basis with a numerically stable
reconstruction procedure. We can then decompose any f ∈ L2(RN ) as:

f(~x) =
∑

(~a,~b)∈ZN×ZN

f(~a,~b)φ(~a,~b)(~x) (2.2)

f(~a,~b) =
〈

f(~x)|φ̃(~a,~b)(~x)
〉

(2.3)

The functions φ̃(~a,~b)(~x) are given by φ̃(~a,~b)(~x) = eik0
~b·~xg̃(~x − ~ax0) with g̃(~x) ∈

L2(RN ) (see [6, 7] for procedures to calculate g̃(~x)).
In [24] we extend the analysis of [7] and show that if x0k0 = 2π/M for

M ∈ 2N, g(~x) decays exponentially in |~x|1 and ˆ̃g(~k) decays exponentially in

|~k|1:
∣

∣∂~αx g̃(~x)
∣

∣ ≤ g(x0, k0, N, ~α)e−r(x0,k0)|~x|1 (2.4)

g(x0, k0, N, ~α) is a constant (explicitly bounded in [24]) as is r(x0, k0) = x0M/8πσ.

(2.4) holds for ˆ̃g(~k), but with x0 and k0 swapped and σ−1 replacing σ.

2.1.1 Phase Space Localization

The WFT allow us to define a concrete realization of phase space. From here
onward, we will consider Z

N × Z
N to be a discrete realization of phase space.

The vector (~a,~b) ∈ ZN ×ZN will represent the point at ~ax0 in position, and ~bk0

in momentum.
With this in mind, we can now construct phase space localization operators

very simply. For a set F ∈ ZN × ZN , we define PF by:

PFψ(x) =
∑

(~a,~b)∈F

ψ(~a,~b)φ(~a,~b)(~x) =
∑

(~a,~b)∈F

〈

φ̃(~a,~b)(~x)|ψ(x)
〉

φ(~a,~b)(~x) (2.5)

It can be shown [24, 5, 6] that phase space localization in terms of the WFT
corresponds closely (though not exactly) to the usual phase space localization.
We state one theorem (proved in [24], based on a result by Daubechies from
[5, 6]) as an example of this:
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Theorem 2.1 Let BX = [−X,X ]N , BK = [−K,K]N for X,K < ∞. Suppose
also that x0k0 = 2π/M for M ∈ 2N. Then there exists C, X and K so that if
X ′ = X − X, K ′ = K − K, then:

∥

∥f(x) − PBX′×BK′
f(x)

∥

∥

Hs

≤ C
(

∥

∥(1 − P sBX ;x0
(~x))f(~x)

∥

∥

Hs +
∥

∥

∥(1 − P 0
BK ;k0(

~k))f(~x)
∥

∥

∥

Hs
+ ǫ ‖f‖Hs

)

(2.6)

The constant C depends on ǫ, s, x0, k0, σ,X and K, as do X and K. C is given
explicitly in [24].

2.1.2 Computation of the WFT Coefficients and Phase Space Pro-

jections: How to do it, and how hard it is

We now present the algorithm for computing the framelet coefficients. The
algorithm consists of computing the products f(~x)g̃(~x−~ax0), followed by Fourier
transforming the results. Due to the spatial decay of g̃(~x), we can truncate the
domain to the box [−Lǫ, Lǫ]

N with minimal error.
Note that g̃(~x) can be calculated as accurately as necessary [6, 7], and we

will not discuss this here.

Algorithm 2.1 Calculation of Windowed Fourier Transforms
This algorithm calculates, for a function f(x), the WFT coefficients f(~a,~b) for

~a ∈ A ⊆ ZN . We assume that the frequencies are bounded above by kmax. The
lattice spacing in frequency, k0 is taken to be 2π/Lǫ; taking it to be any larger
than this yields only logarithmic improvements in computational complexity.

1. Let A ⊂ Z
N be some set of position coordinates.

2. For each ~a ∈ A multiply f(~x)g̃(~x− ~ax0) for ~x ∈ [−Lǫ, Lǫ]
N + ~ax0 only.

3. Calculate the Fast Fourier Transform of f(~x)g̃(~x − ~ax0) on this region.
For each ~a, the resulting function is f(~a,~b).

We observe that this algorithm is local in space. This means that if A is
finite, then the computational cost is proportional to:

|A| kNmax |supp g̃(~x)|
N

log(kmax |supp g̃(~x)|) = |A| 2NkNmaxL
N
ǫ

The reason for this complexity is as follows. For each ~a ∈ A, we need to
compute an FFT. The FFT is computed only on the “support” (after truncating)
of g̃(~x) and the lattice spacing in this region is 2π/kmax = O(1/kmax). Thus,

there are O(|supp g̃(~x)|
N
kNmax) = M data points in this region. The FFT has

computational complexity M log(M). In addition, we need to compute |A| of
these FFT’s.

Note that this algorithm can be parallelized very easily, simply by having
different processors compute the FFT’s for different ~ax0.

6



Remark 2.2 As an example, consider the case when A = {~a ∈ ZN : ~ax0 ∈
[−(Lint + w), (Lint + w)]N \ [−Lint, Lint]

N}. Then the size of A is proportional
to
∣

∣[−(Lint + w), (Lint + w)]N \ [−Lint, Lint]
N
∣

∣ /xN0 . If Lint ≫ w, then this is of

order LN−1
int , and the computational complexity is O(LN−1

int kNmax log(Lintkmax)).
We consider this case since this is what the TDPSF requires.

Phase space projections can also be computed. Let F ⊂ ZN × ZN be finite.
Let A = {~a ∈ ZN : ∃~b ∈ Z, (~a,~b) ∈ F}. Then we provide the phase space
projection algorithm:

Algorithm 2.2 Phase Space Projection Algorithm
This algorithm computes the phase space projection onto a region of phase

space F .

1. Compute A = {~a : (~a,~b) ∈ F}. Assume this is finite.

2. Compute f(~a,~b) for ~a ∈ A as in Algorithm 2.1.

3. Define a new function f t : Z
N × Z

N → C by:

f t
(~a,~b)

= f(~a,~b), (~a,~b) ∈ F

f t
(~a,~b)

= 0, (~a,~b) 6∈ F

4. Compute the inverse WFT of f t. The result approximates PF f(x), with
errors caused by the truncation of g̃(~x) in Algorithm 2.1.

Clearly the computational complexity of Algorithm 2.2 is of the same order
as that of Algorithm 2.1.

2.2 Propagation with Periodic Boundaries: FFT/Split Step
Algorithm

The TDPSF is a filtering algorithm, which is built on top of another propagation
method which solves (1.1) on a box with periodic boundaries. The exact manner
in which this is done is irrelevant for our purposes, provided it is sufficiently
accurate. However, it is important to note that the spectral propagation method
is significantly better than the usual FDTD methods, and that compatability
with spectral methods is an important feature of the TDPSF.

Fix a grid spacing δx and timestep δt. The computational grid is sim-
ply the region [−Lcomp, Lcomp]

N sampled at the lattice with spacing δx. This
corresponds to a lattice spacing in momentum of 2π/Lcomp, with maximal mo-
mentum 2π/δx. A common rule of thumb is that if the problem has a maximal
momentum kmax, then δx = 4π/kmax.

Algorithm 2.3 Split Step Propagation Algorithm
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This algorithm approximates the propagation of (1.1) on the region
[−Lcomp, Lcomp]

N . The accuracy is O(δt2) time and O(δxω) (“spectral accu-
racy”) in space. It is O(δt3) in time if (1.1) is linear.

First, the discrete operator ei(1/2)∆tf(x) is defined by computing the FFT of

f(x), multiplying by eik
2t and then computing the inverse FFT of the result.

With this in mind, the algorithm is as follows (taking ψ0(x) as initial con-
dition, and assuming t is a multiple of δt):

1. Define ψ1/2(x) = ei(1/2)∆δt/2ψ0(x).

2. For j = 0, . . . , t/δt− 2, define:

ψj+1+1/2(x) = ei(1/2)∆δte−ig(jδt,~x,ψj+1/2(x))δtψj+1/2(x)

3. Finally, define ψt/δt(x) ≈ ψ(x, t) by:

ψt/δt(x) = ei(1/2)∆(δt/2)e−ig(jδt,~x,ψj+1/2(x))δtei(1/2)∆δtψt/δt−3/2(x)

This is a numerical realization of the Trotter-Kato product formula:

U(t) ≈ ei(1/2)∆(−δt/2)





t/δt
∏

j=1

ei(1/2)∆δte−ig(jδt,~x,ψ(x,jδt))δt



 ei(1/2)∆δt/2 (2.7)

The computational complexity of Algorithm 2.3 is

O((Lint + w)NkNmax ln[(Lint + w)kmax])

per timestep (since the number of data points is of order (Lint + w)kmax). The
number of timesteps is Tmax/δt. Thus, split step propagation has time com-
plexity O[LNintk

N
max log(Lintkmax)(Tmax/δt)]. Algorithm 2.3 is by now a textbook

result [4], so we will not discuss it further.

2.3 The TDPSF Algorithm

The TDPSF algorithm consists of solving (1.1) on the box [−Lcomp, Lcomp]
N

with periodic boundary conditions, using Algorithm 2.3 or any other method.
At times Tstep, 2Tstep, etc, we subtract from the solution the projection onto
Gaussians which are outgoing by means of Algorithm 2.2.

Outgoing Gaussians are defined to be those φ(~a,~b)(~x) with ~ax0 ∈ [−(Lint +

w), (Lint + w)]N \ [−Lint, Lint]
N and which are moving strictly outward under

the free flow; that is, those which are leaving [−Lint, Lint]
N soon (before a time

Tstep has passed) and which will never return.
Incoming Gaussians are those which will not leave [−Lcomp, Lcomp]

N before
time Tstep has passed.

There is also a set of ambiguous gaussians. These are gaussians with ve-
locity sufficiently low so that they spread about their center faster than they
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move. They are ambiguous because they are both leaving [−Lcomp, Lcomp]
N

and returning to [−Lint, Lint]
N due to their spread. An example of this would

be e−(x−Lint−w/2)
2/2σ2

. This gaussian is located inside the buffer region, and is
spreading laterally with no motion whatsoever.

The TDPSF algorithm does not know what to do with these gaussians,
which correspond to low frequency waves. However, unlike other algorithms (e.g.
Dirichlet-Neumann, PML or absorbing potential), the TDPSF does know when
such waves are causing a problem. Thus, incorrect results are never returned.

Algorithm 2.4 Propagation algorithm This is the main propagation algorithm.
In this algorithm, we consider σ, x0, k0 to be fixed. Lint and Tmax are also con-
sidered fixed. The initial data is considered fixed, and localized inside [−Lint, Lint]

N .
The approximation will be denoted by Ψ(x, t). Also, fix a small tolerance ǫ > 0.

1. Before beginning, precalculate the set of framelets which are outgoing, and
those which are ambiguous.

2. Define Ψ(x, t) iteratively as follows. Loop over n = 0 . . . Tmax/Tstep. In
what follows, the propagator U(t) is calculated by Algorithm 2.3.

(a) For t ∈ [(n− 1)Tstep, nTstep), define

ψ(x, t) = U(t− (n− 1)Tstep)ψ(x, (n − 1)Tstep)

(b) For t = nTstep, define:

Ψ(x, nTstep) = (1 − POUT)U(Tstep)ψ(x, (n − 1)Tstep)

(c) At each integer multiple of Tstep, compute

‖PAMBU(Tstep)ψ(x, (n − 1)Tstep)‖Hs

where AMB is the set of ambiguous framelets. If this quantity is
greater than ǫ, stop the program and notify the user.

Remark 2.3 The TDPSF fails gracefully in the following respect. If the TDPSF
is unable to filter due to slowly moving waves, the program fails and the user is
notified. Absorbing potentials, the PML and Dirichlet-Neumann maps do not
have this property.

Remark 2.4 In order to calculate POUT, we must calculate the WFT coeffi-
cients of the solution in the region [−Lcomp, Lcomp]

N \ [−Lint, Lint]
N . To cal-

culate PAMB, we need the WFT coefficients from the same region. Thus, only
one WFT is needed for steps (b) and (c). The cost of computing the Hs norm
of the ambiguous framelets is cheaper than the cost of a WFT; this is merely a
sum rather than a set of FFT’s.
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Thus, all that remains is to do is explain which framelets are outgoing,
incoming and ambiguous.

For a given (~a,~b), this can be determined easily, by a direct calculation based
on (1.3). This is done in [24] for s = 0, 1, and other cases can be done with the
help of Maple/Mathematica.

The end result of the calculation is the following. Define R~b(t) by

R~b(t) =
√

σ2 + t2/σ2(Γ−1(N/2, 2ǫ2πN/2/
∣

∣SN−1
∣

∣))1/2 (2.8a)

if we measure the error in L2(RN ) or

R~b(t) =
√

σ2 + t2/σ2 max

{[

Γ−1

(

N/2,
ǫ2πN/2

2 |SN−1| (1 + |~bk0|22)

)]1/2

,

[

Γ−1

(

(N + 2)/2,
ǫ2σ2πN/2

2 |SN−1|

)]1/2
}

(2.8b)

if we measure the error in H1(RN ).
The function Γ−1(a, x) is the inverse function of x 7→ Γ(a, x), with Γ(a, x)

the complementary incomplete Gamma function. This definition implies that
all the mass (up to a tolerance ǫ) of ei(1/2)∆tφ(~a,~b)(~x) is, at time t, contained in

a ball of radius R~b about the point ~ax0 +~bk0t. That is:
∥

∥

∥ei(1/2)∆tπ−N/4σ−N/2eik0
~b·~xe−|~x−~ax0|

2
2/2σ

2
∥

∥

∥

H0,1(B(t)C)
≤ ǫ (2.9a)

B(t) = {x : |~ax0 +~bk0t− ~x|2 ≤ R~b(t)} (2.9b)

Thus, if B(t) does not intersect [−Lint, Lint]
N , this framelet is strictly bad.

Similar calculations can be done in Hs, although R~b must be redefined (and

now depends on ~b). Thus, given the result of this calculation, we define the set

of outgoing Gaussian’s to be the set of (~a,~b) ∈ ZN × ZN such that:

1. ~ax0 ∈ [−(Lint + w), (Lint + w)]N \ [−Lint, Lint]
N

2. B(t) does not intersect [−Lint, Lint]
N for any t < Tmax.

A simple criterion to determine whether a given framelet is outgoing is to
check whether ~ax0 ∈ [−(Lint + w), (Lint + w)]N \ [−Lint, Lint]

N , and whether
~bnk0 ≥ 2 ln ǫ/σ. Here, ~bn is the component of ~bk0 pointing in the direction nor-
mal to [−Lint, Lint]

N . Conversely, this means that to filter waves with frequency
kmin (or higher) making an error ǫ, then σ ≥ ln ǫ/kmin. This determines the
width of the buffer region. This appears to be somewhat larger than what a
PML requires, although we were unable to obtain high accuracy using current
implementations of the PML (see Remark 3.1).

The set of ambiguous framelets is the set of framelets for which B(t) inter-
sects [−Lint, Lint]

N , but also intersects R
N \ [−(Lint +w), (Lint +w)]N . That is

to say, these are framelets with both incoming and outgoing components.
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A calculation based on (1.3) shows that these consist of framelets with either
low velocities, or framelets which are located on the boundary but are moving
tangentially to the boundary.

To assess the time complexity of the TDPSF algorithm, we recall remark 2.2,
which says that when Lint ≫ w, the cost of computing POUT (by Algorithm
2.2) is only O(LN−1

int kNmax log(Lintkmax)). Thus, in this case, we find that the
added complexity of TDPSF propagation over the Split Step algorithm is of
lower order than the Split Step itself. However the constant is significantly
larger in our experiments, so on a small grid the TDPSF propagator is slower
than FFT/Split Step propagation.

We discuss some possible improvements on this algorithm in section 5.

3 Numerical Examples

In this section we discuss the results of our numerical tests.
The TDPSF algorithm is built in the program Kitty. Kitty is written in

Python, with C extensions, calling the external libraries FFTW [12], Numarray
and Matplotlib. The external programs gnuplot, ImageMagick and gifsicle were
also used for making graphs/movies.

Kitty is licensed under the GPL. It is very much a work in progress, and has
little documentation and minimal user interface (an end-user version is currently
in progress). Various test cases, spanning many types of parameters, are also
available for download from the author’s webpage, http://math.rutgers.edu/˜stucchio.

3.1 Simple Tests: Free Schrödinger Equation

The standard method for testing absorbing boundaries is simply to throw coher-
ent states (which are well localized in frequency) at the boundary and compute
the difference between the approximate result and the true solution. This is a
useful test, although it by no means completely characterizes the errors, as we
discuss in Section 3.2.

Our implementation is as follows. The free Schrödinger equation (i.e.
g(t, ~x, ψ(x, t)) = 0) was solved on [−102.4, 102.4] with TDPSF boundaries on
the regions [−102.4,−88] and [88, 102.4]. The lattice spacing was δx = 0.1 in
space, 5× 10−4 in time, and the TDPSF filtering interval was Tstep = 2× 10−3.

The initial condition was taken to be ψ(x, 0) = e−x
2/4eivx with v ranging from

1 to 25. The simulation was run from t = 0 out to Tmax = 3 · 51.2/v.
After the solution was given sufficient time to exit the computational domain,

the error in the region [−88, 88] was measured (comparing with the exact result
(2.9)). The error as a function of velocity is graphed in Figure 1. The TDPSF
was used with σ = 1, 2, 4. The results are comparable to the complex absorbing
potential V (x) = −25ie−(x−25.6)2/16, which is also shown in Figure 1. The width
of the complex potential was chosen so that it’s spatial extent is comparable to
the width of the TDPSF used. Altering the height of the potential changed only
position of the dip in Figure 1, and achieved little other benefit.
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Figure 1: A graph of error vs the velocity of an outgoing pulse. The boxes,
diamonds and “+” signs indicate TDPSF error reports.

In step 2c of Algorithm 2.4, the TDPSF checks whether it is making an
error. The above simulations were run with tolerance 10−6, and the simulations
for which the TDPSF reported an error are indicated in Figure 1. Each time
the TDPSF failed (and 4 times when it was successful), it notified the user of
the error. The absorbing potential was unaware of it’s own failures.

This particular example demonstrates no major advantage of the TDPSF
over the absorbing potential apart from the awareness of errors when the occur.
The TDPSF works better for high frequencies, but not low. The advantage of
the TDPSF is not that it succesfully dissipates outgoing waves, but that it does
not dissipate incoming waves. An example of this will be demonstrated in the
next section.

Remark 3.1 Using the programs from [15] (available at http://www.math.unm.edu/∼hagstrom/),
we ran a similar set of simulations to the ones above using the PML for bound-
ary absorption. Since FDTD methods rather than spectral methods were used,
we took δx = 6.7 × 10−4, δt = 2.4 × 10−6, and a PML with a thickness of 500
lattice points1. The error was of order 10−2 − 10−3, probably due to the use of
FDTD instead of spectral methods for solving the interior problem.

1The computational region was [−20, 20] with 30, 000 lattice points. Solving on [−100, 100]
would require require 5 × 30, 000 = 150, 000 lattice points (the TDPSF/spectral solver uses
512 lattice points for the region [−20, 20]).
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3.2 Harder Tests: Long Range Potentials

The main problem associated with an absorbing potential or PML is that not
all waves located near the boundary are outgoing. The problem is that some
waves are incoming, and should not be dissipated.

Consider the following linear Schrödinger equation (with (~x, t) ∈ R2+1):

i∂tψ(x, t) =

[

−(1/2)∆ −
15

0.05|~x|22 + 1

]

ψ(x, t) (3.1)

ψ(x, 0) = ei7x2e−|~x|22/20 + ei4x1e−|~x|22/20

The initial condition consists of two coherent states of equal mass, one with
velocity 4 and one with velocity 7. The notable fact about this particular
potential is that the fast Gaussian has enough kinetic energy to (mostly) escape
from the binding potential, while the slow Gaussian does not. The slow Gaussian
moves toward the boundary, turns around and returns.

The problem with the absorbing potential approach is that it does not dis-
tinguish between incoming and outgoing waves. It dissipates everything on the
boundary including the waves that should have returned. We believe this should
also occur for the PML (at least the PML found in [15]).

We ran three simulations of (3.1). The first was performed using the TDPSF
with σ = 2.0, x0 = 0.8, k0 = 2π/12.8 = 0.491 and Tstep = 0.1. The region of
computation was [−25.6, 25.6]2, with lattice spacing δx = 0.2 in space and
δt = 0.025 in time. The region of interest was [−10, 10]2. Note that even if the
region of interest were larger (as in Section 3.1), the width of the TDPSF region
would not grow2. An identical simulation was performed (on the same region)
with an absorbing potential

V1(~x) = −20ie−(~x1±25.6)2/36 − 20ie−(~x2±25.6)2/36

The third was solved with periodic boundary conditions on [−204.8, 204.8]2

(all other parameters were the same). This boundary is sufficiently distant so
that the outgoing waves cannot return to the origin for a time 408.6/7.0 ≈ 58.
Letting ψt(x, t) be the solution with the TDPSF boundary, ψa(x, t) be the
solution with the absorbing boundary and ψd(x, t) be the solution with the
distant boundary, we measured the relative error:

Et,a(t) =
‖ψt,a(x, t) − ψd(x, t)‖L2([−10,10]2)

‖ψ0(x)‖L2(R2)

Figure 2 plots the error. In total, the error for the absorbing potential
reaches 7.0% by t = 58, while the TDPSF makes an error of 5.0%. The reason
the error is so large for the TDPSF is that there is a concentration of mass near

2We could have performed this test on the box [−204.8, 204.8]2, with the TDPSF region
still having width 15.6. But comparisons with an accurate simulation on a larger box would
be impossible.
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k = 0 near the boundary. This poses a problem for the absorbing potential, as
Figure 2 shows.

However, the problem with the absorbing potential is even more serious
than it appears at first glance. The true solution ψ(x, t) can be written as
ψ(x, t) =

∑

j e
−iEjtψjφj(x)+ψd(x, t), with φj(x) the bound states and ψd(x, t)

the dispersive part of ψ(x, t). According to our simulations, by approximately
t = 30, ψd(x, t) appears to have dispersed. Therefore, after this point, all that
should remain are bound states.

This implies that M(t) = ‖ψ(x, t)‖L2([−10,10]2) should remain approximately
constant after t = 30. This behavior can be seen in the distant boundaries sim-
ulation as well as the TDPSF simulation. This does not occur for the absorbing
potential. Figure 3 graphs M(t) for t ∈ [0, 60] (in the distant boundaries case)
and t ∈ [0, 120] otherwise. The absorbing potential appears to be dissipating,
although we know this is impossible. For larger times, even the qualitative
behavior of the absorbing potential simulation is wrong.

The reason the TDPSF performs better than the complex potential is that it
distinguishes outgoing waves from incoming waves. The TDPSF only removes
waves which sit on the boundary and are also clearly outgoing. Low frequency
waves on the boundary, which return to the computation region are incorrectly
dissipated by the absorbing potential, but (correctly) ignored by the TDPSF.
This is why the TDPSF gives the correct long time behavior.

This problem is more dangerous than this example suggests. Although in
this example we can determine that the dissipation is artificial, we cannot always
do so. Similar problems occur often in atomic physics, but with exponentially
decaying resonances as well as bound states (corresponding to complex Ej).
In this case, one cannot distinguish the dissipation caused by the absorbing
potential from that caused by the dynamics, and the measured decay rate will
be incorrect. Since the object of such a simulation is often the measurement of
the decay rate, this is a serious problem.

3.3 Soliton Filtering

Consider the nonlinearity, g(t, ~x, ψ(~x, t)) = − |ψ(~x, t)|
2
. It is desirable to con-

struct a numerical algorithm which filters outgoing solitons as well as free waves.
Although the TDPSF was not designed to filter solitons, it turns out to work
well for solitons which are not moving slowly. This is however a coincidence,
and cannot be expected to hold in general. A referee pointed out that it will
fail for the KdV equation.

The reason for this is that an outgoing soliton with sufficiently high veloc-
ity is localized in phase space on outgoing waves. Consider a simple soliton,
φ(x, v, t) = 2−1/2ei(vx+(1−v2)t)/ cosh((x− vt)). A simple calculation shows that

for |k − v| ≫ 1, φ̂(k, v, t) ∼ e−|k−v|. Thus, for k ≫ kmin, this shows that the
framelet coefficients of φ(x, v, t) which are moving too slowly to resolve have
exponentially small mass. This shows that under the free flow this soliton is
strictly outgoing.
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The soliton is also leaving the box under the full flow U(t). Although ei(1/2)∆t

and U(t) move the soliton very differently (one dispersively, one coherently),
they both move it out of the box and in nearly the same direction. For this
reason, we expect the TDPSF is to filter soliton solutions correctly.

We ran numerical tests to demonstrate this as follows. We solved (1.1)

with g(t, ~x, ψ(~x, t)) = − |ψ(~x, t)|
2

on the region [−25.6, 25.6] with δx = 0.05,
δt = 0.002/v and Tstep = 0.008/v (the timestep’s are scaled with the velocity to
speed up the simulations). In this simulation, Lint = 12.0 and w = 13.6. The
initial condition was taken to be ψ(x, 0) = 2−1/2eivx/ cosh(x) for v = 1..15.

The TDPSF was used with Tstep = 0.08/v, x0 = 0.20, k0 = 2π/3.2, and
σ = 1, 2, 3. We measured the following quantity:

E(v) = sup
t<200/v

‖ψ(x, t) − ψex(x, t)‖L2([−12,12])

‖ψex(x, 0)‖L2(R)

(3.2)

The function ψex(x, t) is the exact solution. The result of this experiment is
plotted in Figure 3.3. The time 200/v was chosen since it is more than enough
time for errors to return to the region [−10, 10]. We believe the error floor near
10−10 visible in Figure 3.3 is due to truncation errors in the calculation of the
WFT, and errors due to time-stepping in solving the interior problem.

Remark 3.2 The paper [26] proposes an alternative method of absorbing bound-
aries (namely the paradifferential strategy), based on a novel method of ap-
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proximating the Dirichlet-to-Neumann operator. A similar numerical test was
performed for those boundary conditions. For a soliton at velocity 15, Szeftel
obtained E(15) = 0.08 at best. For comparison, we obtain E(15) = 1.69×10−10

for σ = 1 and E(v) = 1.40 × 10−10 for σ = 3.
Our tests are not directly comparable. Our region of interest was [−12, 12]

with TDPSF region on [−25.6,−12] and [12, 25.6], as opposed to Szeftel who
used [−5, 5] (although we used 256 spatial lattice points rather than 200, as
used in [26]). We used FFT/Split Step propagation for the interior problem, as
opposed to the finite differences of [26]. Additionally, storage of the history on
the boundary was required in [26], unlike the TDPSF.

It is quite surprising that the TDPSF beats the Dirichlet-to-Neumann bound-
ary by such a large margin because [26] takes the nonlinearity into account while
the TDPSF assumes the nonlinearity is zero on the boundary.

4 Comparison to Other Methods

4.1 Dirichlet-to-Neumann Boundaries

The Dirichlet-to-Neumann map was originally constructed by Engquist and Ma-
jda in [11, 9] (see also [1, 2]). Their guiding principle was that near the boundary,
the physical optics approximation to wave flow is sufficiently accurate to filter
off the outgoing waves.The TDPSF is a direct analogue of this - the Gaussian
framelet elements behave (under the free flow) like classically free particles. We
use a different method to filter, but the guiding principle is the same.

Modern approaches attempt to construct the exact solution on the boundary
and then impose it as a boundary condition. In principle, this is the best
possible approach, although in practice it is difficult to implement for dispersive
equations. We briefly mention two major approaches that we are aware of, and
remark that only one [26] even attempts to deal with nonlinear equations.

An additional problem is that this approach precludes the use of spectral
methods (e.g. Algorithm 2.3) to solve the interior problem, reducing accuracy of
the solution on the interior for dispersive equations. The FFT naturally imposes
periodic boundaries rather than Dirichlet-to-Neumann, thus requiring the use
of FDTD or other local methods.

4.1.1 Current Constructions

To deal with the free Schrödinger equation (no nonlinearity or potential), Lubich
and Schädle [16, 19] constructed an approximation to the exact integral kernel
of the Dirichlet-Neumann operator based on a piecewise exponential (in time)
approximation. This approach appears to work nicely for the free Schrödinger
equation, although it is uncertain that it could be applied to the full Dirichlet-
to-Neumann operator of a nonlinear equation or long range problem.

We are aware of only one fully nonlinear Dirichlet-to-Neumann operator,
constructed by J. Szeftel in [25]. Szeftel uses a modified version of the parad-
ifferential calculus (see references in [25]) in 1 space dimension to deal with
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smooth nonlinearities and potentials. He proves local well posedness of (1.1) of
the boundary conditions assuming H6 regularity of the initial data.

However, extensions to RN appear highly nontrivial. The assumptions are
significantly stronger than ours, and there are no error bounds. The numer-
ical experiments look promising and the results appear accurate for radiative
problems (see also Remark 3.2).

4.2 Absorbing Potentials/ PML

4.2.1 Absorbing Potentials

Absorbing (complex) potentials, described in [17], are the current “industry
standard”. One can add a dissipative term −ia(x)ψ(~x, t) to the right side of
(1.1) and solve it on the region [−(Lint + w), (Lint + w)]N . The function a(x)
is a positive function supported in [−(Lint + w), (Lint + w)]N \ [−Lint, Lint]

N .
This has the effect of (partially) absorbing waves which have left the domain
of interest, although it might create spurious reflections and dissipation. This
approach is the mainstay of absorbing boundaries, being simple to program and
compatible with spectral methods.

The potential a(x) must be tuned to the given problem. Given kmin, kmax,
one must select the height and width of the absorber so that it kills most of the
wave between kmin and kmax. Waves with momentum lower than kmin are mostly
reflected, and waves with momentum higher than kmax are mostly transmitted
and wrap around the computational domain.

Heuristic calculations and numerical experiments suggest that the absorber
must have width proportional to Ckmax ln(ǫ)/kmin, with C depending on the spe-
cific shape of the potential. The TDPSF works on a layer of width C ln(ǫ)/kmin,
which is smaller by a factor of kmax. Spurious dissipation is an additional prob-
lem with absorbing potentials, as illustrated in Section 3.2.

4.2.2 Perfectly Matched Layers

Perfectly Matched Layers (PML) are a variation on this approach, first proposed
in [3] for Maxwell’s equations. In [15] they are designed and tested for the 1
dimensional free Schrödinger equation, with reasonable results.

In the special case of the Schrödinger equation3, the PML consists of adding a
term −ia(x)(1/2)∆ψ(~x, t) to the right side of (1.1) instead of merely −ia(~x)ψ(~x, t).
If a(~x) is chosen carefully, one can completely eliminate reflections at the in-
terface (the boundary of supp a(~x)) for certain frequencies. It also has the
property of dissipating high frequency waves more strongly than low frequency
ones, thereby requiring a boundary layer of size only C ln(ǫ)/kmin.

As discussed in remark 3.1, numerical tests using the PML of [15] achieved
errors of only 10−3. The PML is likely to have the same problem as complex

3In general, one constructs the PML by exterior complex scaling, but for the Schrödinger
equation it takes this simple form.
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absorbing potentials with spurious dissipation. Some PML methods are un-
stable [18]. The PML method for the Schrödinger equation is still very much
undeveloped, so a more detailed comparison is difficult to make.

5 Conclusion

We have described in this work a new method, the Time Dependent Phase
Space Filter, of filtering outgoing waves for the nonlinear Schrödinger equation.
Unlike absorbing potentials and (most likely) PML methods, the TDPSF filters
only those regions of phase space containing outgoing waves. Dissipative terms
on the boundary filter all waves, including waves which should have returned to
the computational region from the boundary (see Section 3.2).

Our method is easier to construct than the Dirichlet-Neumann map, be-
ing based on standard techniques of signal processing rather than complicated
pseudo/para-differential calculus. It is local in time, whereas the Dirichlet-
Neumann map is history dependent. The TDPSF is also compatible with spec-
tral methods, unlike the Dirichlet-to-Neumann map.

Unlike all other methods we are aware of, the TDPSF fails gracefully, in the
sense that when it cannot filter the outgoing waves it notifies the user rather
than reporting an incorrect calculation as correct.

The main problem with the method is the problem of filtering low frequency
outgoing waves, a problem shared with all other methods. We are currently
working on an extension of the TDPSF [23] which will reduce the cost of filtering
from C ln(ǫ)/kmin to C ln(ǫ) ln(kmin).
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